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manipulation.  A variety of field robotics applications, such 
as planetary exploration considered here, admit 
representations of low enough dimensionality that 
deterministic approaches can be applied directly. The 
present work can be viewed as a result in leveraging this 
property to design an efficient fielded system. 

The autonomous capabilities of planetary rovers have 
continued to increase with each rover deployment on the 
Red planet.  Back in 1997, the Sojourner rover achieved the 
first autonomous rover traverse on another planet. 
However, this autonomous capability was limited.  The 
hazard avoidance system used laser stripes with a camera 
system to detect rocks and determine contour lines [2]. By 
repeating this process at small, three-inch increments, the 
rover was able to build sparse terrain maps and avoid 
obstacles.  Using the above rock detection algorithm, 
engineers were able to command the rover to position itself 
in front of designated rocks.  These capabilities were 
exercised over distances of only a few meters.     
 In 2004, the Jet Propulsion Laboratory landed two more 
capable rovers on the opposite side of Mars.  Both Spirit 
and Opportunity enjoyed a greater level of sensing and 
compute capabilities compared to their Sojourner 
predecessor.  Each rover had a suite of stereoscopic 
cameras: front and rear camera pairs with wide field-of-
view (FOV) lenses for hazard avoidance (“hazcams”).  
Each rover also carried an articulated mast head with two 
stereo camera pairs with both wide and narrow FOV 
camera pairs (“navcams” and “pancams”).  These rovers 
were designed to traverse longer distances than their 
predecessor. To date, the Spirit and Opportunity rovers 
have logged a combined 30.5 km on the Martian surface 
[3]. A sixth of this traverse distance was accomplished with 
some level of autonomy for hazard detection and 
avoidance.  The rovers would either use active obstacle 
detection and avoidance or employ hazard detection only to 
affirm the safe traversal of a predefined rover path. Unlike 
the Sojourner rover that used laser stripes for generating 
terrain maps, the Mars Exploration Rovers generated three-
dimensional maps using dense stereo at quarter resolution 
from their hazcams.  Then, they used goodness maps to 
assess terrain traversability.  Using their autonomous 
navigation capability, the MER rovers demonstrated, one 
time, a 6m autonomous traverse and precise placement [1]. 
While this marks another major milestone in autonomous 
capabilities for planetary rovers, the execution of this 
capability was done in a relatively benign environment and 
without any obstacles in the path of the rover2.   
 In addition to these developments on flight missions, 
active research in the autonomous traverse and instrument 
placement for planetary rovers was on-going at several 
institutions over the past decade.  Early work focused on 
instrument placement for single and multiple rock targets 
from a distance of 3-5 m [4].  This work was demonstrated 
on the Rocky 7 research rover [5] on fairly benign terrain 
and had a final instrument-placement precision on the order 
 

2 Hardware limitations on the rovers have limited further utilization of 
this capability as of this writing. 

of 5-10 cm.  Planning and execution for such tasks has been 
investigated at LAAS-CNRS [6].  Work by Pedersen et al. 
[7] demonstrated multiple-target single cycle instrument 
placement in terrains with only a few obstacles. 

B. State-of-the-Art 

To acquire measurements with the Spirit and Opportunity 
rovers at designated targets, MER scientists and operators 
spend a significant amount of time carefully planning and 
preparing a sequence of rover steps to (i) traverse and 
position the rover relative to the target (ii) verify a 
collision-free path for the arm and (iii) deploy and orient 
the instrument on the target to acquire measurements.  
When a rover is within 10 – 20 m from the designated 
target, it typically spends one or two sols navigating to a 
nearby location and positioning itself for the final approach 
to the target.  Then it approaches the target such that it is 
within the arm’s workspace with a high manipulability 
index [8].  After completing the final approach, the third sol 
will deploy the arm and acquire a measurement.  Each sol 
requires significant human oversight and control.  Were the 
rovers able to navigate to targets and take measurements 
autonomously—human input only for target(s) selection—
the speedup for taking certain kinds of measurements 
would increase by at least three fold for a single 
measurement and an order of magnitude for multiple targets 
in a single sol. 

C.  Challenges Addressed 

This work builds upon and extends prior work done by 
members of this team, other researchers at JPL[1][4][9], 
and researchers at Ames Research Center [7].  Our work 
focuses on advances to motion planning and terrain analysis 
for addressing the challenges of environments with denser 
rock distributions.  For instance, in very rocky 
environments the rover often needs to execute tight 
maneuvers with small clearances between rocks such as in 
“threading the needle” between multiple obstacles.  Such a 
capability is not available on the Mars Exploration Rovers: 
they always maintain a safe clearance for an in-place turn 
since their path planners require more obstacle clearance 
than [10].  Furthermore, we address situations that require 
the rover to traverse over small to medium-sized rocks (up 
to a wheel diameter in height) where such traversals result 
in rover undulations and tilts of the mast of about 15-30.  
Maintaining 2-3 cm precision on the final instrument 
placement – after autonomously traversing terrain with 
highly-variable wheel/rock traction – requires constant 
tracking of the target during the traverse.  Such precision 
also becomes difficult as the target’s size and appearance 
changes drastically as the rover closes in on the target.  We 
address all these challenges within the computational 
constraints of radiation-hardened processors and image 
acquisition systems of planetary rovers. To the best of our 
knowledge, prior work did not address such challenging 
rover traverses followed by precise instrument placement. 
 To address the traverse challenge, we adapted and 
integrated a new continuous-curvature path-planning 
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technology would need to be assessed relative to available 
on-board instruments and the time that they would need to 
acquire and process their measurements.  
 Future work would include demonstrating autonomous 
instrument placement on multiple targets on rocky and 
sloped terrains.  Several components of this capability are 
being considered for the Mars Science Laboratory mission 
and the entire system could be integrated onto the proposed 
joint NASA/ESA ExoMars mission currently planned for 
2018.  
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